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ABSTRACT 

 Delays deteriorate the control performance and could destabilize the overall system in the theory of discrete-

time signals and dynamic systems. Whenever a computer is used in measurement, signal processing or control 

applications, the data as seen from the computer and systems involved are naturally discrete-time because a 

computer executes program code at discrete points of time. Theory of discrete-time dynamic signals and systems 

is useful in design and analysis of control systems, signal filters, state estimators and model estimation from 

time-series of process data system identification. In this paper, a new approximated discretization method and 

digital design for control systems with delays is proposed. System is transformed to a discrete-time model with 

time delays. To implement the digital modeling, we used the z-transfer functions matrix which is a useful model 

type of discrete-time systems, being analogous to the Laplace-transform for continuous-time systems. The most 

important use of the z-transform is for defining z-transfer functions matrix is employed to obtain an extended 

discrete-time. The proposed method can closely approximate the step response of the original continuous time-

delayed control system by choosing various of energy loss level. Illustrative example is simulated to demonstrate 

the effectiveness of the developed method. 

Keywords - Discretization, Time-delay systems, Z-transform. 

I. INTRODUCTION 

Sampling a continuous-time system is a 

fundamental problem in a variety of scientific 

areas, such as computer control, system 

identification and signal processing. It is 

becoming even more conspicuous in light of the 

huge success of computer-aided processing and 

networking [9, 12]. There are many intriguing 

problems related to sampling. Time delay is one 

of the key factors influencing the overall system 

stability and performance. In particular, as the 

different effects of actuator, sensor and 

controller exist in control systems, delays are 

often   formulated as state time delays, input 

time delays as well as output time delays in a 

continuous-time or discrete-time framework [8, 

14]. To digitally simulate and design a 

continuous-time delayed control system, it is 

often required to obtain an equivalent discrete-

time model. The digital modeling of 

continuous-time systems with input delays can 

be found in a standard textbook .To improve the 

performance of a continuous-time system with 

multiple time delays, several advanced control 

theories and practical design techniques have 

been proposed [7,10]. Most control systems are 

formulated in a continuous-time framework, for 

which many analysis tools and control 

methodologies are well-established. With the 

rapid advances in digital technology and 

computers, digital control provides various 

advantages over its analog counterpart for better 

reliability, lower cost, smaller size, more 

flexibility and better performance. The resulting 

digitally controlled continuous time system 

becomes a sampled-data system.  

        Systems including time delay, due to the 

system dynamics, are widely present in the 

industry which imposes a lot of constraints that 

make the control and computer programming of 

such system difficult [1].Then the control of a 

system with a time delay is generally difficult; 

due to the constraints imposed by the time 

delay. These constraints can cause performance 

deterioration that leads the process to instability 

especially when operating in closed loop [2, 3, 

4, 11].Most physical systems, a macroscopic 

point of view, are continuous. In modern 

control systems, information is digitally 

processed which requires sampling signals [3, 
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5]. One speaks in this case of sampled or 

discrete systems. If necessary, it is always 

possible to obtain the state equations from the 

transfer-function matrix [13]. Another 

advantage of using the transfer-function matrix 

is that one can decompose the multivariable 

system into p subsystems, each with one output 

and m inputs. For this reason we need the 

discretization of continuous time-delay systems.  

      The objective of this paper is to extend and 

analyze the ideas in the just cited references; we 

consider three methods for obtaining the 

discrete-time delay approximation. These are: 

          (i) Backward difference method. 

          (ii) Forward difference method. 

           (iii) Bilinear z-transformation method. 

      The paper is organized as follows: The next 

section discusses discretization of systems with 

external point delay; Section 3 provides 

numerical examples; Section 4 includes a 

comparison between the three methods 

followed by a conclusion in the end of the 

paper. 
 

II. DISCRETIZATION OF SYSTEMS WITH 

EXTERNAL POINT DELAY     

       In a digital computer, time cannot flow 

continuously as it is perceived in the physical 

world. The time is defined on a discrete set of 

times, which are separated by a regular time 

interval known by one sampling period. It is 

therefore necessary to define new mathematical 

tools adapted to discrete time, to represent the 

sampled signals and systems and to adapt tools 

and methods for automatic analog continuous 

time in the design of digital controllers. 

     Then our problem may be stated as the 

determination of a discrete time approximation 

corresponding to the following state-space 

equations: 


    




0 1

.
( ) ( ) ( ) ( )

( ) ( )

t A x t A x t h Bu t

y t Cx t

x                     (1) 

Where: 

0
( )A x t : Original Term state. 


1
( )A x t h : Delayed Term state. 

With h qT : a multiple delay the sampling 

period is an integer q . 

T  : The sampling period assumed chosen 

suitably. 

,x u andyRespectively are the state vector, the 

vector and the control vector output. 

0 1
, ,A A BandC are matrices of suitable 

dimensions. 

 

    Calculating the Laplace transform of the 

system (1), we get the following equation 

model: 

 
    


 

0 1
( ) X(0) A ( ) ( ) B ( )

( ) ( ) ; X(0) 0

hppX p X p A e X p U p

Y p CX p
(2) 

 

This is equivalent to this equation: 

 
   

 0 1
( ) ( )hpX p pI A A e BU p                       (3) 

 

This equation can be written as:  


   
 

1

0 1
( ) ( )hpX p pI A A e BU p                       (4) 

Then: 


    
 

1

0 1
( ) ( ) ( )hpY p CX p C pI A A e BU p     (5) 

From (5) we can get: 


    

 

1

0 1

( )
( )

( )
hpY p

H p C pI A A e B
U p

             (6) 

 

      Implementation of continuous-time control 

and filtering functions in a computer program, 

in some cases we need to find a discrete-time z-

transfer function matrix from a given 

continuous-time p -transfer function. In 

accurate model based design of a discrete 

controller for a process originally in the form of 

a continuous-time p -transfer function, 

( )H p .The latter should be discredited to get a 

discrete-time process model before the design is 

started. There are several methods for 

discretization of a p -transfer function. The 

discretization can be realized in several ways by 

calculating the z-transfer function matrix for 

( )H p .The methods can be categorized as 

follows, and they are described in the following 

section: 

A. Forward difference method 

    This method is also called Forward 

rectangular rule. Here we apply the technique of 

the first order approximation by linear 

transformation. These approximations on the z-

transform function matrix exploit the 
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relationship: pTz e .The idea is to approximate 

this relationship by a linear relationship 

between z  and p . 

     When the sampling period T is small, the 

linear approximation of the first order function 

exponential gives: 1pTz e pT    , so we can 

write:
 

1

1

1 1z z
p

T Tz





 
                                     (7)  

     This technique of discretization results from 

the approximation of the derivative of two 

sampling instants: 

 1 1( ) ( ) ( ) 1
( ) ( )

dx t x t T x t z
L pX p z X z

dt T T

    
    

 
  (8) 

       It can be shown that the discrete-time 

transfer function matrix of the transfer function 

matrix given in (6) is obtained by using the 

Forward difference method after substituting 

for
1z

p
T


 : 


  

  
 

   
    
   

1
1

0 1

1
( )

z
h
Tz

H z C I A A e B
T

            (9) 

From (7) we can write: 


  
  

 
   
    
   

1
1

0 1

1
( )

z
h
Tz

H z C I A A e B
T

         (10) 

By applying an approximation Taylor 

expansion near 0 of the term 
  

  
 

1z
h
Te to the first 

order approximation, we can write: 

  

  
  

 


 

1
1

1

z
h
T z

e h
T

                                       (11) 

The expression of ( )H z  becomes: 

 


  
 

     
1

1 1
1 0 1 1( ) ( )H z CTz I A h I A T A T A h z B (12) 

 

B. Backward difference method 

    This method is also called backward 

rectangular rule. To simulate the entire system 

as a discrete-time system one needs to find the 

discrete equivalent. Here we apply the 

technique of the first order approximation. This 

Backward discretization results from 

approximation (8) of the derivative that can be 

made between two sampling times: 

  1 1( ) ( ) ( ) 1
( ) ( )

dx t x t x t T z
L pX p z X z

dt T zT
   

 
 

  
  

 
(13) 

Then, we can write: 
  11 1z z

p
zT T

 
         (14)  

       It can be shown that the discrete-time 

transfer function matrix of the transfer function 

matrix given in (6) is obtained by using the 

backward difference method after substituting 

for
 1z

p
zT


 : 

 
  
 




  
  
   


  

1
1

0 1

1
( )

z
h
zTz

H z C I A A e B
zT

     (15) 

By applying an approximation Taylor 

expansion near 0 of the term 
  

  
 

1z
h
zTe to the first 

order approximation, we can write: 
  

  
 


 

1
1

1

z
h
zT z

e h
zT

                                             (16) 

The expression of ( )H z  becomes: 

 



  

       
   

1

11 1
0 1

( )
A h A hI I

H z C A A z B
T T T T

  (17) 

 

C. Bilinear z-transformation method 

     This method is also called Tustin’s method 

also the trapezoid rule in digital control 

community, there is a good discrete-time 

approximation for a continuous-time linear 

system is obtained through the bilinear z-

transformation if the sampling interval T is 

selected suitably so that 0.5wT  , where w  is 

the magnitude of the pole of the transfer 

function of the continuous-time system far from 

the origin of the P-plane [6]. However, while 

the bilinear z-transformation leads to a 

realization in the form of a transfer-function 

matrix, the method based on the trapezoidal rule 

leads directly to a state space realization, more 

suitable for digital simulation. 

     We apply a second-order approximation by 

bilinear transformation homographic: Tustin 

discretization. The linear approximation of the 

second order function exponential gives: 

1
2

1
2

T
P

z
T

P







                                                          (18) 

Therefore:    
1

1

2 1 2 1

1 1

z z
p

T z T z





 
 

 
               (19)  

 

     This approximation results from the 

approximate numerical integration by the 
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trapezoidal rule, between two sampling times, 

indeed, either:  

1
( ) ( ) ( ) ( )y t x t dt Y p X p

p
              (20)                    

From where: 
(p)

( )

X
p

Y p
                                     (21) 

By approximating between two seconds 

sampling, we get:   

1

1( )
2

k k

k k

X X
y y kT y T




                         (22)  

 
The z-transform function gives then: 

 

   1 11 ( ) 1 ( )
2

T
z Y z z X z                              (23) 

 

From where: 
( ) 2 1

( ) 1

X z z

Y z T z





                            (24)  

Then, we can write:   
1

1

2 1 2 1

1 1

z z
p

T z T z





 
 

 
                                    (25)  

 

     
 It can be shown that the discrete-time 

transfer function matrix of the transfer function 

matrix given in (6) is obtained by using the 

bilinear transformation method after 

substituting for
1

1

2 1

1

z
p

T z









:
 






 




 
   

  

1

1

1
2 11

1
0 11

2 1
( )

1

h z

T z
z

H z C I A A e B
T z

     (26) 

By applying an approximation Taylor 

expansion near 0 of the term 










1

1

2 1

1

h z

T ze to the first 

order approximation, we can write: 

 





 





 



1

1

2 1 1

1
1

2 1
1

1

h z

T z
z

e h
T z

                                (27) 

The expression of ( )H z  becomes: 


           
 

1
1 1( ) (1 ) (I )

1 0 1 1 0 12 2 2 2 2

T T T T T
H z C z I A h A A A h A A z B

  

(28) 

 

III. NUMERICAL EXAMPLES  

      In this section an example of application of 

the proposed approach are presented. This 

example shows the validity of those 

methodologies. As the system is considered by 

this equation: 

 

0 1 0 0 0
x( ) ( ) ( 0.2) ( )

2 3 1 2 1

( ) 1 1 ( )

t x t x t u t

y t x t

   
  



      
      

     




(29) 

 

      In this section we are treating an example of 

a continuous linear system. A delay is only in 

the state which was chosen a sampling period 

T=0.2s and applying the Forward difference 

method, the following discrete time-delay 

system is obtained: 


  
 

     
1

1 1
1 0 1 1( ) ( )H z CTz I A h I A T A T A h z B   (30) 

With: 

 

0 1

0 1 0 0
; ;

2 3 1 2

0
; 1 1 0.2

1

A A

B C and h qT s

   
    

     

 
    
 

 

 The operator 1z is here a time-step delay 

operator, and it can be regarded as an operator 

of the time-step delay, 1z is also the transfer 

function of a time-step delay. 

       The simulation result in the step 

responses of the continuous system and 

approximate discrete system is depicted in 

figure1. 
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Continuous

forward Discretization

 Fig. 1.  Step response of the continuous and discrete 

time delay system. 

     This method is not recommended because 

the discrete-time equivalent may become 

unstable; which is commonly used in 

developing simple simulators, higher distortion 

with the forward rule. 
Applying the method based on Backward 

difference method to the system considered in 

the state-space equations (29), and keeping the 

same sampling period T=0.2s. The following 

discrete time-delay system is obtained: 



  

       
   

1

11 1
0 1

( )
A h A hI I

H z C A A z B
T T T T

 (31) 
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With: 

     

 

0 1

0 1 0 0
; ;

2 3 1 2

0
; 1 1 0.2

1

A A

B C and h qT s

   
    

     

 
    
 

 

   The simulation result in the step responses 

of the continuous system and approximate 

discrete system is depicted in figure2. 
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Continuous

backward Discretization

 Fig. 2.  Step response of the continuous and discrete 

time delay system. 
   
   The forward rectangular rule could cause a 

stable continuous filter to be mapped into an 

unstable digital filter, contrary to the rule of 

backward rectangular rule that keeps the system 

stable conditions except that the answer discrete 

time not following the continuous time.  

Applying the method based on Bilinear z-

transformation method to the system considered 

in the state-space equations (29), and keeping 

the same sampling period T=0.2s.The following 

discrete time-delay system is obtained: 


 

        
 
 
 

1
1 1

( ) (1 ) (I )
1 0 1 1 0 12 2 2 2 2

T T T T T
H z C z I A h A A A h A A z B (32) 

With: 

 

0 1

0 1 0 0
; ;

2 3 1 2

0
; 1 1 0.2

1

A A

B C and h qT s

   
    

     

 
    
 

 

The simulation result in the step responses of 

the continuous system and approximate discrete 

system is depicted in figure3. 
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Fig. 3.  Step response of the continuous and 

discrete time delay    system.                        

    

  It is clear that the value of the delay is shown 

by the simulation by the three discretization 

methods knowing that it did not affect the 

evolution of the system. The evolution of the 

response the field below presents a delay that 

does not degrade the performance of the 

system. 
The bilinear transformation is motivated by 

considering the trapezoidal approximation of an 

integrator. It allows the passage of a Laplace 

transform in a z-transform. It uses the trapezoid 

method to calculate integral. This is a first-order 

approximation of the natural logarithm function 

that is an exact mapping of the z-plane to the P-

plane. When the Laplace transform is 

performed on a discrete-time signal with each 

element of the discrete-time sequence attached 

to a correspondingly delayed unit impulse. The 

trapezoid rule maps the stable region in the P-

plane exactly into the stable region of the z-

plane. This method also offers the most 

accurate phase relative to the continuous 

system. It is clear that both digital controllers 

designed by emulation perform slightly worse 

than the continuous controller. As expected 

however, the trapezoidal integration method 

performs better than the forward and the 

backward rectangular method. 

IV. COMPARISON BETWEEN EULER AND 

TUSTIN’S APPROXIMATIONS  

      We have discussed three different methods 

for obtaining discrete time approximations for 

continuous-time delay systems. Note how the 

discrete equivalent model predicts the 

continuous output at the sample instances. The 

facts that the second and third graph lines 

generate the same result show that the formula 
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we have derived to calculate the discrete 

equivalent transfer function model is correct, 

Euler’s backward differentiation method, which 

is commonly used in discretizing simple signal 

filters and industrial controllers. The backward 

differentiation method may give problems since 

it results in an implicit equation for the output 

variable, while the Forward differentiation 

method always gives an explicit equation. The 

Forward differentiation method is somewhat 

less accurate than the backward differentiation 

method, but it is simpler to use.  In signal 

processing one is interested in making the 

difference between the original and the 

reconstructed signal as small as possible. 
       For continuous systems, the Laplace 

transform has played a major role. In fact, this 

linear transformation allows algebraically treat 

the linear operators, in the case of sampled 

systems; it has to introduce a transformation, 

called z, which has similar properties. The z-

transfer function matrix will substitute for the 

p-transfer function matrix end of the Laplace 

transform. We can see very clearly the 

importance of the sampling period; a lower 

sampling period provides monitoring of the 

response of faithful continuous system with a 

longer period. The consequence of this is that 

the system with the lowest sampling period will 

be the one that will reach stability soon. So for 

the most accurate results possible relative to the 

continuous time it will be beneficial to not take 

too much sampling period. For better 

monitoring of the output in continuous time 

then choose a sampling period that will not be 

too great: but keep in mind that too little time 

require great precision the calculator. In signal 

processing literature the Tustin’s method is 

frequently denoted the bilinear transformation 

method. The term bilinear is related to the fact 

that the imaginary axis in the complex P-plane 

for continuous-time systems is mapped or 

transformed onto the unity circle for the 

corresponding discrete-time system. In addition, 

the poles are transformed so that the stability 

property is preserved; this is not guaranteed in 

the Euler’s Forward and Backward methods. 

     Tustin’s method is the most accurate of these 

three methods, so I suggest it is the default 

choice. However, typically it is not much 

difference between the Tustin’s method and the 

Euler’s backward method. 

     The Euler’s forward method is the least 

accurate method. Tustin’s method and Euler’s 

backward methods are implicit methods since 

the output variable, appears on both the left and 

the right side of the discretized expression, and 

it is in general necessary to solve the discretized 

expression for at each time-step, and this may 

be impractical. 
 

V. CONCLUSION 

In this paper we have proposed three methods 

for the discrete time approximation of 

continuous-time delay systems, using an 

integral numerical approximation, typically 

Euler’s forward method, Euler’s backward 

method or Tustin’s method. These methods 

should be used when a continuous-time 

controller transfer function or filter transfer 

function are discretized to get an algorithm 

ready for programming. In such cases the input 

signal is a discrete-time signal with no holding. 

The discretization is based on some numerical 

method so that the behaviour of the discrete-

time transfer function is similar to that of the 

continuous-time transfer function. 

      Usually we try to choose the sampling 

period an integer sub multiple of delay in 

addition to its forced choice for dynamic 

systems without delay. Finally it appears that 

the model using the Tustin’s method is best 

suited for numerical simulation in the case of 

the continuous system is defined by a state 

model and in the case of a suitable choice of the 

sampling period. In a next job I am interested to 

study the discretization of these types of 

systems by the same methods taking into 

consideration the delay this time is manifold 

which appears in the state and control. 
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